

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

Curso 2011-2012

MATERIA: FÍSICA

INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

La prueba consta de dos opciones, A y B, cada una de las cuales incluye cinco preguntas.

El alumno deberá elegir **la opción A** o **la opción B**. **Nunca** se debe resolver preguntas de opciones distintas. Se podrá hacer uso de calculadora científica no programable.

CALIFICACIÓN: Cada pregunta debidamente justificada y razonada con la solución correcta se calificará con un máximo de 2 puntos. Cada apartado tendrá una calificación máxima de 1 punto.

TIEMPO: Una hora y treinta minutos.

OPCIÓN A

Pregunta 1.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita circular a una altura de 2×10^4 km sobre su superficie.

- a) Calcule la velocidad orbital del satélite alrededor de la Tierra.
- b) Suponga que la velocidad del satélite se anula repentina e instantáneamente y éste empieza a caer sobre la Tierra. Calcule la velocidad con la que llegaría el satélite a la superficie de la misma. Considere despreciable el rozamiento del aire.

Datos: Constante de la Gravitación Universal, $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$; Masa de la Tierra, $M_T = 5.98 \times 10^{24} \text{ kg}$ Radio de la Tierra, $R_T = 6.37 \times 10^6 \text{ m}$

Pregunta 2.- En una cuerda se genera una onda armónica transversal de 20 cm de amplitud, velocidad de propagación 5 m s⁻¹ y frecuencia 30 Hz. La onda se desplaza en el sentido positivo del eje X, siendo en el instante inicial la elongación nula en la posición x = 0.

- a) Escriba la expresión matemática que describe dicha onda si en t = 0 y x = 0 la velocidad de oscilación es positiva.
- b) Calcule la velocidad y aceleración máximas de un punto de la cuerda.

Pregunta 3.- Un electrón que se mueve con una velocidad $\vec{v} = 2 \times 10^6 \vec{i} \text{ m/s}^{-1}$ penetra en una región en la que existe un campo eléctrico uniforme. Debido a la acción del campo, la velocidad del electrón se anula cuando éste ha recorrido 90 cm. Calcule, despreciando los efectos de la fuerza gravitatoria:

- a) El módulo, la dirección y el sentido del campo eléctrico existente en dicha región.
- b) El trabajo realizado por el campo eléctrico en el proceso de frenado del electrón.

Datos: Masa del electrón, $m_e = 9.11 \times 10^{-31} \,\mathrm{kg}$; Valor absoluto de la carga del electrón, $e = 1.60 \times 10^{-19} \,\mathrm{C}$

Pregunta 4.-

- a) Explique el fenómeno de la reflexión total y las condiciones en las que se produce.
- b) Calcule el ángulo a partir del cual se produce reflexión total entre un medio material en el que la luz se propaga a una velocidad $v = 1,5 \times 10^8$ m s⁻¹ y el aire. Tenga en cuenta que la luz en su propagación pasa del medio material al aire.

Datos: Velocidad de la luz en el vacío, $c = 3 \times 10^8 \,\mathrm{m \ s^{-1}}$; Índice de refracción del aire, n = 1

Pregunta 5.- Se dispone de 20 g de una muestra radiactiva y transcurridos 2 días se han desintegrado 15 g de la misma. Calcule:

- a) La constante de desintegración radiactiva de dicha muestra.
- b) El tiempo que debe transcurrir para que se desintegre el 90% de la muestra.

OPCIÓN B

Pregunta 1.- Una nave espacial de 3000 kg de masa describe, en ausencia de rozamiento, una órbita circular en torno a la Tierra a una distancia de 2.5×10^4 km de su superficie. Calcule:

- a) El período de revolución de la nave espacial alrededor de la Tierra.
- b) Las energías cinética y potencial de la nave en dicha órbita.

Datos: Constante de la Gravitación Universal, $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$; Masa de la Tierra, $M_T = 5.98 \times 10^{24} \text{ kg}$ Radio de la Tierra, $R_T = 6.37 \times 10^6 \text{ m}$

Pregunta 2.- La potencia sonora del ladrido de un perro es aproximadamente 1 mW y dicha potencia se distribuye uniformemente en todas las direcciones. Calcule:

- a) La intensidad y el nivel de intensidad sonora a una distancia de 10 m del lugar donde se produce el ladrido.
- b) El nivel de intensidad sonora generada por el ladrido de 5 perros a 20 m de distancia de los mismos. Suponga que todos los perros emiten sus ladridos en el mismo punto del espacio. *Dato: Intensidad umbral, I*₀ = 10^{-12} W m⁻²

Pregunta 3.- Una espira circular de 10 cm de radio, situada inicialmente en el plano XY, gira a 50 rpm en torno a uno de sus diámetros bajo la presencia de un campo magnético $\vec{B} = 0.3 \ \vec{k} \ T$. Determine:

- a) El flujo magnético que atraviesa la espira en el instante t = 2 s.
- b) La expresión matemática de la fuerza electromotriz inducida en la espira en función del tiempo.

Pregunta 4.- Un objeto de 15 cm de altura se encuentra situado a 20 cm de un espejo convexo cuya distancia focal es de 40 cm.

- a) Calcule la posición y el tamaño de la imagen formada.
- b) Realice el trazado de rayos correspondiente.

Pregunta 5.- Una partícula de 1 mg de masa en reposo es acelerada desde el reposo hasta que alcanza una velocidad v = 0.6 c, siendo c la velocidad de la luz en el vacío. Determine:

- a) La masa de la partícula cuando se mueve a la velocidad v.
- b) La energía que ha sido necesario suministrar a la partícula para que ésta alcance dicha velocidad v. Dato: Velocidad de la luz en el vacío, $c = 3 \times 10^8 \text{ m s}^{-1}$